Dynamics of confined suspensions of swimming particles.

نویسندگان

  • Juan P Hernandez-Ortiz
  • Patrick T Underhill
  • Michael D Graham
چکیده

Low Reynolds number direct simulations of large populations of hydrodynamically interacting swimming particles confined between planar walls are performed. The results of simulations are compared with a theory that describes dilute suspensions of swimmers. The theory yields scalings with concentration for diffusivities and velocity fluctuations as well as a prediction of the fluid velocity spatial autocorrelation function. Even for uncorrelated swimmers, the theory predicts anticorrelations between nearby fluid elements that correspond to vortex-like swirling motions in the fluid with length scale set by the size of a swimmer and the slit height. Very similar results arise from the full simulations indicating either that correlated motion of the swimmers is not significant at the concentrations considered or that the fluid phase autocorrelation is not a sensitive measure of the correlated motion. This result is in stark contrast with results from unconfined systems, for which the fluid autocorrelation captures large-scale collective fluid structures. The additional length scale (screening length) introduced by the confinement seems to prevent these large-scale structures from forming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of confined colloid-polymer mixtures

We investigate the effect of confinement on particle dynamics in mixtures of colloidal particles and non-adsorbing depletant polymers that serve as models for attractive suspensions. Holding the volume fraction of particles and the polymer concentration constant, the dynamics of the particles become increasingly slow as the suspensions are confined in thin wedgeshaped cells. Confocal micrograph...

متن کامل

Transport of a dilute active suspension in pressure-driven channel flow

Confined suspensions of active particles show peculiar dynamics characterized by wall accumulation, as well as upstream swimming, centreline depletion and shear trapping when a pressure-driven flow is imposed. We use theory and numerical simulations to investigate the effects of confinement and non-uniform shear on the dynamics of a dilute suspension of Brownian active swimmers by incorporating...

متن کامل

Orientational order and instabilities in suspensions of self-locomoting rods.

The orientational order and dynamics in suspensions of self-locomoting slender rods are investigated numerically. In agreement with previous theoretical predictions, nematic suspensions of swimming particles are found to be unstable at long wavelengths as a result of hydrodynamic fluctuations. Nevertheless, a local nematic ordering is shown to persist over short length scales and to have a sign...

متن کامل

Emergent hydrodynamic bound states between magnetically powered micropropellers

Hydrodynamic interactions (HIs), namely, solvent-mediated long-range interactions between dispersed particles, play a crucial role in the assembly and dynamics of many active systems, from swimming bacteria to swarms of propelling microrobots. We experimentally demonstrate the emergence of long-living hydrodynamic bound states between model microswimmers at low Reynolds numbers. A rotating magn...

متن کامل

Kinetic Models for Biologically Active Suspensions

Biologically active suspensions, such as suspensions of swimming microorganisms, exhibit fascinating dynamics including large-scale collective motions and pattern formation, complex chaotic flows with good mixing properties, enhanced passsive tracer diffusion, among others. There has been much recent interest in modeling and understanding these effects, which often result from long-ranged fluid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 2009